
12 May/June 2014

the attached intercept library captures the system call, modifies
the call to include whatever new functionality is intended, and
sends the modified call to the operating system, represented
here by the NonStop Kernel. When the intercept library receives
a response from the operating system, it sends the modified
response to the process. At no time is the process aware that any
modifications were made to its original system call.

Intercept libraries can be used for many purposes – debugging,
tracing, application monitoring, statistics collection, testing,
replication and synchronization, encryption and tokenization,
virtualization, etc. All are examples of enhancing an application
by extending its functionality beyond its original purpose and
beyond the limitations of its source code.

The Very Best Thing about Interception…..
….is that no source code changes are required. No program

recompiling is required. In fact, with interception technology, you
don’t even need access to the source code. If you bought software
from a third-party provider, you don’t need the source code. If
it’s HP code, you don’t need the source code. Even if you wrote
the application in-house and have the source code, you don’t need
the source code. The program logic does not change because an
intercept library linked to an executable works seamlessly at the
machine layer, thereby eliminating the necessity to reimplement the
function for every program. An intercept library can be written in
TAL and linked to a program written in C, C++, Java, or COBOL.
Language standardization is not an issue. Imagine the savings in
development, testing, and support-related costs when interception
is used to augment program behaviors.

The Architecture of Interception
As defined earlier, interception technology enables the capture

of a variety of system and database API calls in order to enhance
application behaviors. Interception takes place at the native API

Introduction
Companies make massive investments in both third-party and

in-house applications in order to operate their mission-critical
NonStop environments. However, those applications come with
limits to their functionality – limits that often cannot be altered
without prohibitively expensive, system-wide modifications. How
does a company address application enhancement requirements?
Interception technology is one solution. Interception technology
enables the capture of a variety of system and database calls
in order to enhance application behaviors. The result is the
creation of new application functionality without the need to
make source code changes, of particular importance when the
source code is unavailable. “Interception Technology Enhances
Application Functionality” will define interception technology and
its benefits, the architecture of interception, the origin of NonStop
interception, and the areas in which interception technology is
being employed today. They include application modernization
and development, system consolidation, security, business
continuity, and PCI compliance.

Let’s Define Interception Technology
With help from Wikipedia, let’s define interception technology

as it applies to computer programming. Interception technology
covers a range of techniques that can be used to alter or augment
the behaviors of applications, operating systems, or other
software executables by intercepting function calls or system calls
passed between computer components. The code that handles
intercepted function calls, system calls, events, or messages most
commonly is called a “hook.” In the NonStop world, a hook is
known as an intercept library.

An intercept library, or hook, sits between an operating system
and a program, a user library, or a dynamic-link library (DLL). As
a process carries out a function (read / insert / update / delete),

Interception Technology Enhances Application
Functionality

Jack Di Giacomo
President
TANDsoft, Inc.

www.connect-community.org 13

changed easily without having to rebuild the application. This very
flexible DLL also can be shared by other processes.

In the Intercept-Dynamic figure, a
program invokes a system procedure
READ and requests that data from
the NonStop Kernel be sent to the
program. Instead of the execution
being transferred immediately to
the system procedure READ, the
intercept library captures the call
via its own READ procedure, makes
any call modifications that have been
requested, then dynamically calls the
system procedure READ. Dynamic
calls are used to locate and navigate
to the physical address of the system

READ procedure. In the absence of dynamic calls, an intercept
library will only READ itself (a recursive call). The system READ
carries out the requested function, and the call then returns
via the intercept library. At this point, the intercept library may
make more modifications before it returns the requested data,
modifications included, to the program, thereby completing the
original system call.

It is important to highlight that modifications can be made from
the program to the operating system, from the operating system to
the program, or to and from both during the same process.

Intercept-Retarget
An Intercept-Retarget intercept library is also separately compiled

and is linked to the application program at the time of execution.
However, when an Intercept-Retarget intercept library is used, the
application program must be “prepared” in advance with a step that is
performed only once prior to execution. Operating-system calls made by
the program are ‘retargeted” to the procedures in the intercept library.

In the Intercept-Retarget figure, a
program is “prepared” by assigning
it an intercept library before any
calls are executed. The program’s
procedure calls are renamed to the
intercept library’s equivalents. For
example, calls to system procedure
READ are changed to R^^D. Next,
the prepared program and its linked
intercept library are simultaneously
executed. The intercept code, also
named R^^D, is invoked instead of
the system procedure READ. The
intercept library linked into the

program captures the call, makes modifications, then directly calls
the system procedure READ. There is no need to make a dynamic
call because the system READ procedure is clearly different than
the intercept library’s R^^D procedure. Upon the call’s return, the
intercept library may make more modifications to the API contents
before it returns the requested data to the program, thereby
completing the original system call.

Although not as flexible as Intercept-Dynamic, Intercept-
Retarget produces less overhead because the direct system API call
is faster than the dynamic system API call.

level, so any program written in any language can interact with the
operating system without the need to alter the original program
logic. For instance, programs call NSK (NonStop Kernel) system
procedures to carry out specific functions, to access databases,
and to utilize system resources. Cases in point - database I/O,
IPC, communications, security capabilities, and current time. An
intercept library is able to seamlessly capture, monitor, and modify
these interactions with no need for program changes.

Intercept libraries are programs themselves –specialized layers
of code that can be user libraries or dynamic link libraries (DLL).
In the NonStop world, the intercept library captures Guardian or
OSS calls from programs, user libraries, or DLLs [private, public
(licensed and unlicensed)]. NonStop-specific intercept libraries
typically support TNS, TNS/R, and TNS/E environments – file
codes 100, 700, and 800, interpreted code – accelerated and native.
Intercept libraries can perform both capture and logging.

The figure here is a simplified example of an intercept library.
An application process or program provides services to its end
users. As part of its operation, the application process typically
makes several calls to operating-system services. These calls,
for instance, may be requests to read an incoming message, to
generate an outgoing message, or to manipulate a database.

The intercept library positions itself between the application
process and the operating system in such a way as to capture
calls made to the operating system. Rather than the operating-
system function being invoked on a call by the application, the
intercept library is invoked instead. Thus, when the application
makes an operating-system call, e.g., to read an incoming
message or to issue an update to a database, the intercept library,
not the operating system, is invoked and processes the call. The
intercept library can modify the execution of the operating-
system function in any way that it has been programmed to
do. The response to the modified operating-system call is then
returned to the application process. The entire operation is so
seamless that the application process has no idea that its call was
intercepted and modified.

For instance, an intercept library might intercept all
interprocess messages being sent to other applications to
add information to those messages for enhanced processing.
Alternatively, an intercept library might capture database calls
(read, insert, update, delete) to make decisions about the validity
of the updates, to modify the updates according to application
rules, to record the update activity, or to make other updates
such as to a change log. For events or transactions, the intercept
library might invoke other application services such as security
monitoring and authorization.

A closer look at intercept libraries reveals two common
interception methods – Intercept-Dynamic, which occurs
during run time, and Intercept-Retarget, which also takes place
during run time except that it must be “prepared” prior to
execution. Although compiled differently, they nevertheless
perform the same functions.

Intercept-Dynamic
A dynamically loaded intercept library (DLL) is not compiled

as part of any application but instead is compiled separately. It
is linked, or inserted, into the application program only when
the application program is run as a process. Therefore, it can be

14 May/June 2014

Files purged or deleted accidentally can
be recovered from a recycle bin. Scripts
can be executed upon process termination.
Low-pin resources can be optimized across
all CPUs. Workloads can be balanced

between CPUs and disks.

Use interception technology to protect
sensitive data at rest (Enscribe, SQL/MP)
or in transit. Enforce security policies for
authorization, authentication, and password
changes. Replace sensitive data, such as

Primary Account Numbers (PANs) or Personally Identifiable
Information (PII) with powerful tokens or format-preserving
encryption (FPE). Interception helps companies achieve industry
compliance (PCI 3.4, SOX, HIPAA).

Replicate Enscribe, SQL/MP, and SQL/
MX DDL changes to a backup site. Automatic
TMF protection of Enscribe files – Insert
TMF transactions BEGINTRANSACTION,
ENDTRANSACTION. Replicate Enscribe

unaudited files or Enscribe file modifications to a backup site.

Interception technology plays a valuable
role in system consolidation. Time-Zone
simulation - allows Guardian and OSS
applications to operate within any virtual
time zone. System clock simulation – allows

Guardian and OSS applications to operate with any virtual system
clock or current time value.

Don’t Be Scared of Interception Technology
Ignore whatever it is you have heard about the challenges

of interception technology. Intercept libraries are not hard to
manage. They are not difficult to install. They do not create a
massive increase in overhead, and they do not slow down your
system.

Yes, there may be some increase in overhead. But today’s faster
processors minimize to almost nothing any potential impact.

And yes, interception can be challenging, in part because
it is so different for TNS, TNS/R, and TNS/E environments.
However, utilities exist to simplify the tasks of associating,
managing, and removing intercept libraries from programs.

For example,
•	 Installing, or associating, intercept libraries to qualified

programs automatically whenever programs are
recompliled. ADD or Remove Library for all programs on
$data.servobj.* where file code 100 and owner = qc.*

•	 Using intercept libraries to identify programs and
processes. List all processes running within a specific
Virtual Time-Zone.

•	 Removing intercept libraries from qualified programs.
Many great interception solutions are offered by NonStop

partners who specialize in interception technology. They
provide excellent alternatives to building intercept libraries
in-house.

NonStop Interception Began with Tracing
Tracing is a specialized use of logging to record information

about a program’s execution. Real-time debugging and diagnostic
analyses are common examples of trace utilities. Tandem old-
timers like this author remember the days when interception
technology was limited to communications-based tracing.
Internetwork and cross-platform communication was and
still remains highly complex from a development standpoint.
Remember TIL (Tandem-to-IBM Link)? TIL opened a data path
between one NonStop or a network of NonStops and an IBM
370 or compatible system equipped with IBM’s 3803-1 or 3803-
2. Remember CUP, CMI, ptrace? Those early trace utilities eased
the complexity by capturing, or intercepting, the communication
protocol inputs and outputs between the NonStops and other
NonStops, between NonStops and IBMS for debugging and
diagnostic purposes. Even then, trace tools possessed the same
powerful benefit as their interception descendants. Source code
modifications were not and are not required.

It took a few years for trace capability to evolve from
communications-based solutions to the broader spectrum of
process-trace. CUP, CMI, and ptrace were Tandem-developed
tools. It was third-party providers, many of whom began their
careers as Tandem developers, who expanded the possibilities
of using interception technology with other applications and for
purposes beyond debugging and diagnostics. Modifying database
input/output, setting breakpoints on NonStop system procedures,
process-to-process migration and interaction, API interception
in virtual environments, detecting and resolving application
deadlocks, educational tools to document program behavior and
data flow, and the list goes on.

Encryption and decryption for data in-flight and at-rest are one
of the latest uses for interception technology, and future solutions
are only as far away as are the problems they need to resolve.

How NonStop Customers Use Intercept Technology
NonStop customers employ interception in a variety of ways to

extend the functionality of their applications.

Interception technology can provide
automatic TMF protection of non-audited
Enscribe files. Added TMF protection
facilitates synchronization of DR databases.
Interception also can enable the conversion

of Enscribe files to SQL tables (Enscribe OPEN, READ, WRITE
converts to EXEC SQL OPEN, FETCH, INSERT) in order to enable
access to the database for OPEN tools.

List program system procedure calls made
to the NonStop Kernel. Identify deadlocks
and program sequencing errors. Monitor
process stack usage to avoid abends caused
by stack overflow. Learn programming

techniques (NonStop, Enscribe, multi-threading, Nowait I/O,
IPC, TMF, Startup, DEFINEs, malloc). Add Enscribe file-format
modifications without the need to reprogram. When Enscribe
database field formats change, modify only those programs that
use the new format, not ALL programs that access the new format.
Example - date format changes.

Application
Modernization

System
Management

Security and
Compliance

Business
Continuity

Virtualization
and System

Consolidation

Development,
Testing, and

Trace

www.connect-community.org 15

TANDsoft Inc.
TANDsoft Inc. specializes in interception technology. Company

products include the OPTA2000 virtual clock- and time-zone
simulator; FileSync for automatic file synchronization, replication,
and data deduplication; the OPTA suite of interception and trace
utilities (OPTA¬Trace Online Process Tracer and Analyzer, Recycle
Bin, EMS Alerts Online Startup and Termination Capture Utility,
Low Pin Optimizer); Stack Monitor, which alerts developers to the
impending threat of a stack overflow; Command Stream Replicator,
which logs and automatically replicates TMF-audited/unaudited
FUP, SQL/MP and SQL/MX DDL structure and other environment
changes to target systems; AutoLib, which automatically loads
a user library or a DLL for executing processes; the Enscribe-2-
SQL and TMF-Audit Toolkits and the new Enscribe-2-SQL Data
Replicator, all of which offer flexible, affordable alternatives to more
expensive conversion products or manual conversion techniques;
E2S-Lite, which permits efficient, low-cost Enscribe modifications
without the need to change a program’s source code; and SDI
(Sensitive Data Intercept) for Enscribe and SQL/MP.

Summary
Interception technology once existed only in the realm of

communications-based tracing. Today, it is a powerful means by
which to enhance the behaviors of mission-critical applications
without the need to make costly, time-consuming modifications
or complete recompiles. Interception technology never alters
original application logic, does not require source-code access, and
is language-ambivalent because it works at the native API level.
Intercept libraries are not hard to manage. They are not difficult
to install. They do not create a massive increase in overhead, and
they do not slow down your system. NonStop customers take
advantage of existing interception utilities in a number of NonStop
environments and for a variety of functions. The technology is
so flexible that it will continue to be the solution of choice for
technical challenges that arise in the future.

Jack Di Giacomo has 30 years of experience in the design, development
and support of NonStop software solutions. He is the president of TANDsoft,
Inc., a company specializing in interception technology. TANDsoft delivers
quality interception solutions for virtual clock- and time-zone simulation
(OPTA2000), application modernization (Enscribe-2-SQL and TMF-Audit
Toolkits and Command Stream Replicator), business continuity (FileSync),
and sensitive data intercept (SDI). Contact Jack at jack.digiacomo@
tandsoft.com or at 514-695-2234.

